8 research outputs found

    Evolving the Physical Global Ocean Observing System for Research and Application Services Through International Coordination

    Get PDF
    Climate change and variability are major societal challenges, and the ocean is an integral part of this complex and variable system. Key to the understanding of the ocean's role in the Earth's climate system is the study of ocean and sea-ice physical processes, including its interactions with the atmosphere, cryosphere, land and biosphere. These processes include those linked to ocean circulation; the storage and redistribution of heat, carbon, salt and other water properties; and air-sea exchanges of heat, momentum, freshwater, carbon and other gasses. Measurements of ocean physics variables are fundamental to reliable earth prediction systems for a range of applications and users. In addition, knowledge of the physical environment is fundamental to growing understanding of the ocean's biogeochemistry and biological/ecosystem variability and function. Through the progress from OceanObs'99 to OceanObs'09, the ocean observing system has evolved from a platform centric perspective to an integrated observing system. The challenge now is for the observing system to evolve to respond to an increasingly diverse end user group. The Ocean Observations Physics and Climate panel (OOPC), formed in 1995, has undertaken many activities that led to observing system-related agreements. Here, OOPC will explore the opportunities and challenges for the development of a fit-for-purpose, sustained and prioritized ocean observing system, focusing on physical variables that maximize support for fundamental research, climate monitoring, forecasting on different timescales, and society. OOPC recommendations are guided by the Framework for Ocean Observing (Lindstrom et al. 2012) which emphasizes identifying user requirements by considering time and space scales of the Essential Ocean Variables. This approach provides a framework for reviewing the adequacy of the observing system, looking for synergies in delivering an integrated observing system for a range of applications and focusing innovation in areas where existing technologies do not meet these requirement

    Global perspectives on observing ocean boundary current systems

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here

    Atlantic Meridional Overturning Circulation: Observed Transport and Variability

    Get PDF
    The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26°N, 11°S, SAMBA 34.5°S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16°N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate

    Chlorophyll a in the northern Patagonian shelf (SW South Atlantic) during austral spring and summer

    No full text
    The species composition and structure (e.g. abundance and biomass) of protistan plankton (cell size > 5 ”m) and in situ chorophyll a were assessed in a shallow (<50 m depth) inner shelf area of the Argentine Shelf called El RincĂłn (38Âș-41°S). Surface water samples (5 m depth) for plankton quantification) were taken with Niskin bottles during four oceanographic cruises (two in early austral spring and two in late austral summer- early fall), onboard the vessel B. Houssay accounting for a total of 36 sampling stations. These samples were analyzed under optical microscopy following the inverted microscope technique with sedimentation chambers. Cells enumeration and identification was made up to species, genus or family level, which were afterward categorized in taxonomical groups: diatoms, dinoflagellates, coccolithophores and nanoflagellates. The studied area supports important fishes of commercial interest, therefore plankton biodiversity records are neccesary to understand possible shifts at the population and community levels that might have cascading effects on marine ecosystems' productivity

    Nano- and microplankton in the northern Patagonian shelf (SW South Atlantic) during austral spring and summer

    No full text
    The species composition and structure (e.g. abundance and biomass) of protistan plankton (cell size > 5 ”m) and in situ chorophyll a were assessed in a shallow (<50 m depth) inner shelf area of the Argentine Shelf called El RincĂłn (38Âș-41°S). Surface water samples (5 m depth) for plankton quantification were taken with Niskin bottles during four oceanographic cruises (two in early austral spring and two in late austral summer- early fall), onboard the vessel B. Houssay accounting for a total of 36 sampling stations. These samples were analyzed under optical microscopy following the inverted microscope technique with sedimentation chambers. Cells enumeration and identification was made up to species, genus or family level, which were afterward categorized in taxonomical groups: diatoms, dinoflagellates, coccolithophores and nanoflagellates. Carbon content was calculated following the method of Menden-Deuer et al. (2000) in which biovolume was estimated assigning a geometrical shape to each species (Hillebrand et al., 1999). The biomass is the result of multiplying the carbon content of a species by its abundance in the sample. The studied area supports important fishes of commercial interest, therefore plankton biodiversity records are neccesary to understand possible shifts at the population and community levels that might have cascading effects on marine ecosystems' productivity

    Nano- and microplankton and chlorophyll a from B. Houssay cruises to the northern Patagonian shelf (SW South Atlantic) during austral spring and summer

    No full text
    The species composition and structure (e.g. abundance and biomass) of protistan plankton (cell size > 5 ”m) and in situ chorophyll a were assessed in a shallow (<50 m depth) inner shelf area of the Argentine Shelf called El RincĂłn (38Âș-41°S). Surface water samples (5 m depth) for plankton quantification were taken with Niskin bottles during four oceanographic cruises (two in early austral spring and two in late austral summer- early fall), onboard the vessel B. Houssay accounting for a total of 36 sampling stations. These samples were analyzed under optical microscopy following the inverted microscope technique with sedimentation chambers. Cells enumeration and identification was made up to species, genus or family level, which were afterward categorized in taxonomical groups: diatoms, dinoflagellates, coccolithophores and nanoflagellates. The studied area supports important fishes of commercial interest, therefore plankton biodiversity records are neccesary to understand possible shifts at the population and community levels that might have cascading effects on marine ecosystems' productivity

    Evolving the global ocean observing system for research and application services through international coordination

    No full text
    Climate change and variability are major societal challenges, and the ocean is an integral part of this complex and variable system. Key to the understanding of the ocean’s role in the Earth’s climate system is the study of ocean and sea-ice physical processes, including its interactions with the atmosphere, cryosphere, land, and biosphere. These processes include those linked to ocean circulation; the storage and redistribution of heat, carbon, salt and other water properties; and air-sea exchanges of heat, momentum, freshwater, carbon, and other gasses. Measurements of ocean physics variables are fundamental to reliable earth prediction systems for a range of applications and users. In addition, knowledge of the physical environment is fundamental to growing understanding of the ocean’s biogeochemistry and biological/ecosystem variability and function. Through the progress from OceanObs’99 to OceanObs’09, the ocean observing system has evolved from a platform centric perspective to an integrated observing system. The challenge now is for the observing system to evolve to respond to an increasingly diverse end user group. The Ocean Observations Physics and Climate panel (OOPC), formed in 1995, has undertaken many activities that led to observing system-related agreements. Here, OOPC will explore the opportunities and challenges for the development of a fit-for-purpose, sustained and prioritized ocean observing system, focusing on physical variables that maximize support for fundamental research, climate monitoring, forecasting on different timescales, and society. OOPC recommendations are guided by the Framework for Ocean Observing which emphasizes identifying user requirements by considering time and space scales of the Essential Ocean Variables. This approach provides a framework for reviewing the adequacy of the observing system, looking for synergies in delivering an integrated observing system for a range of applications and focusing innovation in areas where existing technologies do not meet these requirements

    Meridional Overturning Circulation Transport Variability at 34.5 degrees S During 2009-2017: Baroclinic and Barotropic Flows and the Dueling Influence of the Boundaries

    Get PDF
    Six years of simultaneous moored observations near the western and eastern boundaries of the South Atlantic are combined with satellite winds to produce a daily time series of the basin-wide meridional overturning circulation (MOC) volume transport at 34.5 degrees S. The results demonstrate that barotropic and baroclinic signals at both boundaries cause significant transport variations, and as such must be concurrently observed. The data, spanning similar to 20 months during 2009-2010 and similar to 4 years during 2013-2017, reveal a highly energetic MOC record with a temporal standard deviation of 8.3 Sv, and strong variations at time scales ranging from a few days to years (peak-to-peak range = 54.6 Sv). Seasonal transport variations are found to have both semiannual (baroclinic) and annual (Ekman and barotropic) timescales. Interannual MOC variations result from both barotropic and baroclinic changes, with density profile changes at the eastern boundary having the largest impact on the year-to-year variations
    corecore